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The reachability set is defined as the collection of all states which can be traversed from
arbitrary initial conditions due to the application of admissible control. Three different prob-
abilistic approaches to compute the reachability sets for a class of discrete time nonlinear
systems is discussed. The main idea of the probabilistic approach is to consider the bounded
control variables as random variables and represent the reachability sets as the level sets of the
state probability density function. In the first approach, the computation of the state density
function due to variation in control input at each time is made tractable by computing the M-
fold convolution of state density function at each time. To overcome the significant challenge of
taking multi-dimension convolution of state density function, the second approach computes
the probability density function using the Principle of Maximum Entropy (PME). The third
approach utilizes the Conjugate Unscented Transform (CUT) method to curtail the combina-
torial growth of samples. Finally, three numerical example problems are considered to show
the efficacy and utility of the proposed ideas.

I. Nomenclature

xk = system state variable ∈ Rn at time instant tk
uk = control input variable ∈ Rr at time instant tk
U = set of admissible controls ⊂ Rr
pxk (xk) = density function corresponding to xk
puk

(uk) = density function corresponding to uk

ϕxk (s) = characteristic function corresponding to xk
R(x0,U, tM ) = Reachability set at time tM corresponding to initial state x0 and controlU

II. Introduction

Nonlinearity in the representation of the maneuvering Unmanned Autonomous Systems (UAS), uncertainties
associated with system parameters, states and external disturbances together with its embedded control input provide

significant challenges to automating the decision support system. Whether the autonomous system is an Unmanned
Aerial Vehicle (UAV) flying at high speeds through a cluttered environment in the presence of wind gusts, a legged
robot traversing rough terrain, a driverless car transversing an unknown environment, or a micro-air vehicle with
noisy on-board sensing, the inability to take into account control input, system states and other uncertainties cause
degradation to the performance of the control system, owing to the off-nominal operation of the autonomous system.
The successful deployment of autonomous systems depends on rigorous guarantees on performance and safety through
formal verification and validation methods. Quantitative measures to assess the excursions of the autonomous system
motion from the designed trajectory are rigorous and exact for the linear systems. Approximate measures to quantify
these excursions in the real world are poor and can lead to significant compromises in the overall performance. For
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instance, to ensure collision-free paths, advanced driver-assistance systems need to be capable of anticipating all potential
actions of the driver without overly conservative assumptions. This requires performing on-line reachability analysis,
i.e., computation of states that these vehicles can reach within a given time interval. To make it worse, the system states
are typically not fully observable, e.g., a UAV might not have precise knowledge about its position. Thus, conducting
accurate reachability analysis by definition requires reasoning about all possible trajectories from every possible state.
This renders reachability analysis computationally intractable in practice [1]. This computational challenge is further
compounded by the generally large size and nonlinearity of the system in consideration, and the practical need to obtain
verification results for real-time motion planning.

Though one can obtain exact solution for reachability sets for linear time invariant systems, numerical approximations
are necessary to compute the reachability sets for nonlinear systems. For certain classes of continuous dynamics,
exact computation of the set of reachable states was shown in [2]. For more general classes of systems, numerical
approximations have been explored in [3–8]. Alternately, the reachability questions are computed as zero-level set of
the value function of an appropriate optimal control problem [9]. The computation of value function generally require
the solution of the Hamilton-Jacobi-Bellman (HJB) or Issacs (HJI) equation. Various numerical techniques such as
sum-of-squares [10, 11], Zonotope based approaches and Level Set Methods [12] have been developed for reachable set
computations [13–15]. Various toolboxes such as Ellipsoidal[16], CORA (COntinuous Reachability Analyzer)[17],
Trex[18], and HyTech[19] are also developed for the reachability analysis. Refs. [20, 21] have developed feedback
controllers to generate largest time-limited backward reachable set while using the notion of occupation measure.
Furthermore, ellipsoidal [22], support vector machine [23] and reason of interest approximation [24] are considered
for reachability sets computations. While promising, all of these methods face a similar challenge with regards to
computational scalability with the dimension of the system.

In this work, an alternative approach is proposed to compute the reachability sets in a computationally attractive
manner. The main idea is to represent reachable sets as the probability density function of state variable at a given time.
For this purpose, the admissible control set is assumed to be represented by a probability density function for control
input at each time. Exploiting the fact that the control input at a specific time is independent of system states at that
time, the computation of state density function at a given time can be posed as the convolution of density function for
control input vector at previous time with a function of state density function at previous time. Furthermore, the Fourier
transform of density function can be used to convert the convolution of density function to product of corresponding
characteristic functions. Moreover, finite order statistical moments are computed to represent the spectral content of the
density function and principle of maximum entropy is invoked to compute the state density function with highest entropy
and computed moments. Finally, the Conjugate Unscented Transformation algorithm is used to compute the desired
order statistical moments, which will help in curtailing the computational complexity associated with the computation
of state density function.

The structure of paper is as follows: first, a brief introduction to reachability set problem is presented followed by
the description of developed methods. Finally, the numerical simulation results are presented to show the efficacy of the
proposed ideas.

III. Problem Formulation
The reachability flight envelope or set can be defined as the collection of all states which can be transversed from

arbitrary initial conditions due to the application of admissible control. Let us consider the problem of computation of
reachability set for a generic nonlinear system in the following form:

xk+1 = f (xk) + G(xk)h(uk) (1)

where xk ∈ Rn is the system state variable. uk ∈ U ⊂ R
r represents the control input variable at time instant tk . U

is the set of admissible controls and is assumed to be described a density function puk
(uk). For example, a uniform

density function can be used to represent the admissible control set,U which is assumed to be a hypercube. Similarly, a
Gaussian density function can be used to represent an ellipsoidal admissible control set,U. Hence the reachability sets
of a system having an arbitrary initial state, x0 is the set of all possible states at time tN , given uk ∈ U. Mathematically,
it can be represented as shown in Eq. (2)

R(x0,U, tM ) = {∀x ∈ Rn |uk ∈ U,∀k ∈ [0, M] s.t . x(tM ) = x} (2)

The computation of reachability sets presents significant computational challenges due to the sampling of control
inputs with states at each time. As discussed in the last section, there are a vast number of methods in the literature for
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the computation of reachability sets. A heuristic method to compute reachability set will involve Monte Carlo based
sampling of control input space. The main idea of the MC approach is to apply each bounded control input to every
state variables at any point of time. Since this approach requires sampling of control variables from an admissible set at
each time, this increases the number of samples exponentially over the number of time steps. This is because, after the
first time step, one has to take all possible combinations of samples for xk and uk . For instance, if Ns samples of control
variable are assumed at each time from admissible setU, then there will be a total of NM

s samples after M time steps.
This exponential growth can be visualized as shown in Figure (1). Starting from a single initial state x0 and after

applying p control inputs which varies from umin to umax then x(t1) will contain p number of states. Similarly, applying
again p control inputs to these x (t1) states will then give p2 number of states at time t2. On increasing the number of time
steps, this method requires very high computational time. Due to this reason, convolution method is computationally
intractable for most onboard implementations. Therefore, there aroused a need for exploring other methods which are
efficient and can be implemented for onboard applications.
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Fig. 1 Exponential Growth in Samples to Compute the Reachability Set.

A. Convolution Method
In this section, a new approach to compute the reachability set is presented, which avoids the combinatorial growth

of samples. The central idea of this approach is to pose the computation of state density function at any time k, pxk (xk)
as the convolution of two probability density functions to avoid the exponential growth in samples. In this method, the
independence of the state variable xk and control input uk at time tk is also exploited.

For this purpose, let us consider an affine control to the system at each time instance. Hence, the system response at
time k + 1 (represented by xk+1) from Eq. (1) can be written as

xk+1 = f (xk) + uk (3)

Exploiting the fact that xk and uk are independent of each other and writing these as a function of two independent
random vectors, v and w:

xk+1 = v + w (4)
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where v = f (xk) and w = uk . In general case, the probability density function for x(k + 1) can be written as:

pxk+1 (xk+1) =
∫

pv,w(xk+1 − w,w)dw (5)

If v and w are independent of each other, then the aforementioned equation for pxk+1 (xk+1) reduces to the following
convolution of density functions[25]:

pxk+1 (xk+1) =
∫

pv(xk+1 − w)pw(w)dw (6)

In other words, p(xk+1) can be computed as a convolution of derived density function for v = fk = f (xk) and density
function for w = uk as,

pxk+1 (xk+1) = p fk (xk+1 − uk)? puk
(uk)

=
∫

p fk (xk+1 − uk) puk
(uk) duk

=
∫

puk
(xk+1 − fk) p fk ( fk) dxk

(7)

Also, it should be noted that p fk is sometimes known as derived density function since it can be derived from the
density function of xk according to Eq. (8) [25]:

p fk ( fk) = pxk

(
f −1
k (xk+1)

) ∂ f −1
k

(xk+1)
∂xk+1

 (8)

where
 ∂ f −1

k
(xk+1)

∂xk+1

 is the absolute value of the Jacobian determinant. Hence, to compute the density function pxk+1 , it is

only required to sample the space of uk . The iterative application of this result can be used to compute the state density
function p(xN ), and hence the reachability set R(x0,U, tM ).

The probability density function for state and control variables can also be represented as histograms. For the
computation of reachability set using histograms, reachability set R(x0,U, tM ) corresponds to N − 1 convolutions of
histograms for f (xk) and uk . Thus, it is clear that the computation of reachability set through convolution of density
functions reduces the dimensionality of the problem for stochastic analysis. However, the convolution of high-resolution
histograms representing state and control density functions can be computationally demanding due to the challenges
associated with the discretization and histogram generation in multi-dimension space. To overcome this significant
challenge of evaluating the state density function, we exploited a fact that the characteristic function of a density function
is its Fourier transform in multiple dimensions. The characteristic function is defined in Eq. (9) as,

ϕxk (s) = E
[
eis

T xk
]

=
∫

eis
T xk pxk (xk)dxk (9)

Now, by virtue of convolution theorem [26], the convolution of density functions in Eq. (7) can be written as the product
of corresponding characteristic functions:

ϕxk+1 (s) = ϕ fk (s)ϕuk
(s) (10)

Hence rather than taking the convolution of density functions, the product of corresponding characteristic functions
is taken. Although it can be challenging to compute the analytical expression for the characteristic function, the
main advantage of the characteristic function is that one can obtain all the statistical moments of the random vector
xk+1 by differentiating it. The density function representation in terms of the finite number of statistical moments is
equivalent to storing the first few Fourier coefficients of a periodic function. Also, it is more efficient to propagate
the statistical moments than the computation of convolved density function. Therefore, focus was on computing the
statistical moments of the convolved density function as a function of the moments of fk and uk at each time instant.
Since the statistical moments behaves like Fourier coefficients, one can obtain a better description of the state density
function by computing higher order moments of xk+1. Furthermore, the state density function pxM (xM ) and hence
the reachability set, R(x0,U, tM ) can then be obtained from propagated statistical moments by an application of the
principle of maximum entropy (PME) as shown in the next section.
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B. Principle of maximum entropy
In this section, the Principle of maximum entropy to overcome the significant challenges of evaluating the state

density function is discussed. As the name suggests, PME finds the probability density function representing the highest
uncertainty (entropy) with the same set of moments. This seems intuitive since any additional information in terms of
moment constraints will lead to a density function that is better in the sense that it has less uncertainty. The PME can be
mathematically framed according to Eq. (11) and Eq. (12) [27–29].

max
pxk+1

: −
∫

pxk+1 (xk+1)ln{pxk+1 (xk+1)} dxk+1 (11)

s.t. :
∫
gi(xk+1)pxk+1 (xk+1) dxk+1 = Mi i = 1, 2, · · · , Nm (12)

where Mi are known finite scalar values. The set of functions gi(xk+1) have to be independent to form a well-posed
problem and are chosen to be multidimensional monomials that represent moments of various order. The aforementioned
optimization problem is concave in nature and results in a member of the exponential family of density functions that
represents the highest uncertainty with an identical set of moments [29, 30] given by Eq. (13).

pxk+1 (xk+1) = exp{
Nm∑
i=1

λigi(xk+1)} (13)

where, λi are Lagrange multipliers and are found by solving the following system of Nm nonlinear equations:∫
gi(xk+1) exp{

Nm∑
i=1

λigi(xk+1)} dxk+1 = Mi

i = 1, 2, · · · , Nm (14)

Efficient numerical equation solvers (such as in Ref. [29]) can be used to solve the system of nonlinear equations. When
gi(xk+1) are monomials, the exponential function can become insensitive to the Lagrange multipliers corresponding
to the lower order monomials[31] since, the higher degree monomials grow faster. To avoid the sensitivity issue, the
moments constraint equations have to be re-scaled to improve the rate of convergence[31]. The procedure outlined in
Ref.[31] is used to solve the resulting system of equations through the application of Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [32]. It should be noticed that if g′i s correspond to first and second central moments, then PME
results in a Gaussian density function with mean and covariance described by M ′i s. This corresponds to the ellipsoidal
approximation of the reachability set. One can obtain a more accurate description of the reachability set by including
higher order moment constraints in the formulation of PME.

It can be seen that the computation of reachability sets through statistical moments is preferable as it is easier to
compute moments accurately rather than computing multi-dimensional histograms. However, PME requires a good
initial guess and sometimes results in slow convergence depending upon the nature of the optimization problem. In
addition, MC runs are generally required to compute the desired order statistical moments which can be numerically
expensive to evaluate accurately these integrals. Therefore, an alternate approach is presented in the next section
where the recently developed Conjugate Unscented Transformation(CUT) scheme is used to compute the desired order
moments. The independence of the state and the control input is exploited to compute the statistical moments in a lower
dimensional space while the CUT method guarantees a fixed number of points at each time step.

C. Computation using Statistical Moments
This section will discuss the problem description, formulation and specific assumptions of our approach. To compute

the desired order statistical moments efficiently, the fact that the state variable xk at time tk is independent of control
input variable uk at time tk is again exploited.

Let us consider a general non-linear system given by Eq. (1) in an index notation as shown by Eq. (15).

xαk+1 = f α (xk) + Gαβ (xk) hβ (uk) , α = 1, 2, · · · , n, β = 1, 2, · · · , r (15)

where xα
k+1 and f α (x) represent the αth component of vectors xk+1 and f (xk), respectively. Similarly, Gαβ (xk)

represents the αβ component of the matrix G (xk). Notice that in index notation the repetition of the index corresponds
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to summation and hence can be written as,

Gαβ (xk) hβ (uk) ≡
r∑
β=1

Gαβ (xk) hβ (uk) (16)

Now, the expected value of xα
k+1 can be formulated as:

E
[
xαk+1

]
= E [ f α (xk)] + E

[
Gαβ (xk) hβ (uk)

]
(17)

Making use of the fact that xk is an independent random vector from uk , the second term in the aforementioned equation
can be put together as:

E
[
Gαβ (xk) hβ (uk)

]
= E

[
Gαβ (xk)

]
E

[
hβ (uk)

]
(18)

Hence, the first order moment for state vector xk+1 can be written as:

E
[
xαk+1

]
= E [ f α (xk)] + E

[
Gαβ (xk)

]
E

[
hβ (uk)

]
(19)

Since the density function for xk and uk is known and hence the first order moment for xk+1 can be computed by
separately sampling xk and uk space. Similarly, the second order moments can be computed as follows,

E
[
xαk+1xβ

k+1

]
= E

[
( f α (xk) + Gαa (xk) ha (uk))

(
f β (xk) + Gβb (xk) hb (uk)

)]
(20)

= E
[

f α (xk) f β (xk)
]

+ E
[

f α (xk)Gβb (xk) hb (uk)
]

+ E
[

f β (xk)Gαa (xk) ha (uk)
]

+ E
[
Gαa (xk) ha (uk)Gβb (xk) hb (uk)

]
, (21)

α, β = 1, 2, · · · , n, a, b = 1, 2, · · · , r

Once again, making use of the fact that xk is independent of uk , the aforementioned expression can be simplified as as
given by Eq. (22)

E
[
xαk+1xβ

k+1

]
= E

[
f α (xk) f β (xk)

]
+ E

[
f α (xk)Gβb (xk)

]
E

[
hb (uk)

]
+ E

[
f β (xk)Gαa (xk)

]
E [ha (uk)] + E

[
Gαa (xk)Gβb (xk)

]
E

[
ha (uk) hb (uk)

]
(22)

Likewise, the third order moment can also be computed and simplified using the steps mentioned earlier and is finally
given by Eq. (24).

E
[
xαk+1xβ

k+1xγ
k+1

]
= E

[
( f α (xk) + Gαa (xk) ha (uk))

3
]

= E
[

f α (xk) f β (xk) f γ (xk)
]

+ E
[

f α (xk) f β (xk)Gγc (xk) hc (uk)
]

+ E
[

f α (xk)Gβb (xk) hb (uk) f γ (xk)
]

+ E
[

f α (xk)Gβb (xk) hb (uk)Gγc (xk) hc (uk)
]

+ E
[
Gαa (xk) ha (uk) f β (xk) f γ (xk)

]
+ E

[
Gαa (xk) ha (uk) f β (xk)Gγc (xk) hc (uk)

]
+ E

[
Gαa (xk) ha (uk)Gβb (xk) hb (uk) f γ (xk)

]
+ E

[
Gαa (xk) ha (uk)Gβb (xk) hb (uk)Gγc (xk) hc (uk)

]
α, β, γ = 1, 2, · · · , n, a, b, c = 1, 2, · · · , r (23)

E
[
xαk+1xβ

k+1xγ
k+1

]
= E

[
f α (xk) f β (xk) f γ (xk)

]
+ E

[
f α (xk) f β (xk)Gγc (xk)

]
E [hc (uk)]

+ E
[

f α (xk)Gβb (xk) f γ (xk)
]
E

[
hb (uk)

]
+ E

[
f α (xk)Gβb (xk)Gγc (xk)

]
E

[
hb (uk) hc (uk)

]
+ E

[
Gαa (xk) f β (xk) f γ (xk)

]
E [ha (uk)]

+ E
[
Gαa (xk) f β (xk)Gγc (xk)

]
E [ha (uk) hc (uk)]

+ E
[
Gαa (xk)Gβb (xk) f γ (xk)

]
E

[
ha (uk) hb (uk)

]
+ E

[
Gαa (xk)Gβb (xk)Gγc (xk)

]
E

[
ha (uk) hb (uk) hc (uk)

]
(24)
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Fig. 2 The Schematic of CUT points and growth of CUT points with number of random variables.

Similarly, one can obtain the expressions for computing any desired order statistical moments. However, in this
paper, statistical moments up to the 2nd order is used to calculate the reachability set. Notice here that the 1st order
statistical moment corresponds to the mean, the 2nd order statistical moment corresponds to the variance, 3rd order
statistical moment corresponds to the Skewness(measure of asymmetry) and 4th order statistical moment corresponds to
Kurtosis(measure of the tailedness). Now to compute the desired order moments for each module, one needs to sample
the xk and uk spaces. The Monte Carlo (MC) methods traditionally used to evaluate statistical moments suffer from
slow convergence rates. An efficient alternative to random sampling is the quadrature scheme, such as the Gaussian
Quadrature that uses deterministic Mm sample points in m dimensions, chosen to reproduce 2M − 1 moments of the
density function. For example, the number of points required to evaluate the expectation integral with only 5 points
along each direction in a 6-dimensional space is 56 = 15, 625. Fortunately, the Gaussian quadrature rule is not minimal
for m ≥ 2 [33], and there exist quadrature rules requiring fewer points in high dimensions [34]. For example, the
Unscented Transformation (UT) is exact to degree 2 but with linear growth of points with dimension. However, UT
cannot be used to reproduce higher order moments.

A non-product quadrature rule known as theConjugate Unscented Transformation (CUT) [35, 36] has been employed.
The CUT approach can be considered an extension of the conventional UT method that satisfies additional higher
order moment constraints. Rather than using tensor products as in Gauss quadrature, the CUT approach judiciously
selects special structures to extract symmetric quadrature points constrained to lie on specially defined axes as shown
in Figure (2(a)). These new sets of so-called sigma points are guaranteed to exactly evaluate expectation integrals
involving polynomial functions with significantly fewer points. Figure (2(b)) represents the number of quadrature points
required, for 8th order accuracy, by different quadrature schemes (CUT, Gauss-Legendre, Clenshaw-Curtis, and Sparse
Grid), for a uniform random variable, as a function of the dimensionality of the random variable. More details about the
CUT methodology and its comparison with conventional quadrature rules can be found in Ref. [35–43].

In this work, the computation of the statistical moments were limited up to 2nd order. The following lists the required
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CUT approximation of various expected values:

E [ f α (xk)] =
N∑
i=1

wi
x f α

(
xik

)
, E

[
Gαβ (xk)

]
=

N∑
i=1

wi
xGαβ

(
xik

)
(25)

E
[

f α (xk) f β (xk)
]

=
N∑
i=1

wi
x f α

(
xik

)
f β

(
xik

)
(26)

E
[

f α (xk)Gβb (xk)
]

=
N∑
i=1

wi
x f α

(
xik

)
Gβb

(
xik

)
(27)

E
[
hb (uk)

]
=

N∑
i=1

wi
uhb

(
ui
k

)
(28)

E
[
Gαa (xk)Gβb (xk)

]
=

N∑
i=1

wi
xGαa

(
xik

)
Gβb

(
xik

)
(29)

E
[
ha (uk) hb (uk)

]
=

N∑
i=1

wi
uha

(
ui
k

)
hb

(
ui
k

)
(30)

where wi
x and wi

u corresponds to CUT points weight for density functions pxk (xk) and puk
(uk), respectively.

One can also compute expectation integrals appearing in the expressions for higher order moments through the
application of the CUT approach. After computing desired order statistical moments at each time, one can construct the
state density function through the application of various density approximation tools such as PME or SOS. However,
one needs to generate samples from newly approximated density function to compute statistical moments at the next
time step. Since CUT quadrature points are given for only Gaussian and uniform density functions, one can expand the
state variable at each time in terms of polynomial series of standardized Gaussian or uniform variable, ξ

xαk =
N∑
i=0

xαkiφi(ξ)⇒ xk = Xpc(t)Φ(ξ), α = 1, 2, · · · , n (31)

where, φk(ξ) are orthogonal polynomials associated with the assumed probability distribution for the input variables ξ
(Hermite polynomials for normally distributed parameters, Legendre polynomials for uniform distribution, etc.) and can
be computed through the application of the Gram-Schmidt orthogonalization process. Here X are matrices composed of
coefficients of the polynomial expansion for x. Now, the known statistical moments of x at a specific time step, k, can be
written in terms of the unknown polynomial coefficients:

E
[
xαk

]
= xαk0

, α = 1, 2, · · · , n (32)

E
[
xαk xβ

k

]
=

N∑
i=1

xαki xβ
ki
E [φi(ξ)φi(ξ)] , α, β = 1, 2, · · · , n (33)

Note that the expected values of the product of the gPC basis functions, E [φk(ξ)φk(ξ)] , are known from the properties
of the functions. Depending on the order of the polynomial expansion, the desired moment constraints and the dimension
of x, the resulting equations can be over-determined, properly determined, or under-determined. In Ref. [44], an
approach is presented to compute these unknown polynomial series coefficients from desired order moment constraint
equations. Now, one can generate an estimate of the state density function of x by substituting random samples of ξ
in Eq. (31). Of course, there will be an improvement in accuracy when one goes to higher order PC coefficients and
compute higher order moments. However, there is always a trade-off between the accuracy and the computational cost.
Finally, the main steps of the proposed approach can be enumerated as follows:

Step 1: Generate CUT samples from standard Gaussian or Uniform random variables.
Step 2: Compute CUT samples for state variables through the application of Eq. (31). If the state density function

is assumed to be Gaussian or uniform, then only two of the coefficients will be non-zero.
Step 3: Compute multi-dimensional expectation integrals while using Eq. (25)-Eq. (30) to compute desired order

statistical moments for state variable of Eq. (19)-Eq. (22).
Step 4: Recompute polynomial series coefficients through moment matching and go to Step 2.
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IV. Numerical Results
To show the efficacy of the proposed approaches in approximating the reachability set, three numerical examples are

considered. First the reachability set of N-pendulum systems is presented, followed by an airplane flying in wind gusts
is exhibited, and finally reachability set of Dubin’s car Model is shown.

A. Pendulum Problem
In this section, the reachability set of N-pendulums which are connected from one end to another were computed.

The reachability set for a 2-pendulum system is depicted in Fig. 3, where L1, L2 is the length, θ1, θ2 is the angle and
(x1, y1) and (x2, y2) is the position of the 1st and 2nd pendulum respectively. A comparison of MC and convolution
approach is also shown. The Monte Carlo approach here involves every possible combination of the first pendulum
and applies the feasible control input to it for computing the reachability set of the second pendulum. However, in
convolution approach, the reachability set is computed by convolving the probability density function of each pendulum.

Fig. 3 Monte Carlo and Convolution methods Illustration on a 2 - pendulum system

The dynamics of the N connected pendulums can be written as:

xN =
N∑
i=1

Li sin (θi) , yN =
N∑
i=1

Li cos (θi)

where xN , yN is the position of the N th pendulum.
To compute the reachability set of the N th pendulum, the control input θi is bounded uniformly between −60o to

60o. First, the computation of reachability set with the MC method by taking 100, 000 MC points for each pendulum is
performed. After that, the contrast between the convolution and the PME method is made using the same number of
MC points.

The comparison of reachability set for 3, 5, 7, and 9-pendulums can be seen in Fig. 4 based on the methods
described above. Notice that the reachability set always come out to be symmetric along the y-axis and increases in a
non symmetric manner along the x-axis with every increase in the number of pendulums. As seen in the first column of
Fig. 4, the probability contours which are computed both with convolution and Monte Carlo method (shown in cyan
color) are shown. For the 3-pendulum system, it can be noticed that the convolution contours match the shape of the MC
points precisely. For the 5, 7, and 9-pendulums, the contours are also able to capture the reachability set in a reasonably
good manner. For the PME method, the second, third and fourth column of Fig. 4 represents the 2nd, 3rd and 4th
order PME results. As expected, the 2nd order PME contours are coming out to be ellipsoidal corresponding to the
Gaussian assumption. As the order of the moment constraints is increased in PME, the PME solution is able to capture
non-Gaussian shapes. For comparison between the PME and convolution method, it can be seen that the convolution
can capture the MC points pretty accurately, but the 4th order PME results fail to do so. For instance, the 4th order PME
results for the 3-pendulum system fails to capture the outline shape, but the convolution can capture it accurately.
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3 - pendulums
<latexit sha1_base64="qQaXtA7Y9pkD+X6lu6/OQ0rjyxg=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHbjQY9BLx4jmAckS5idnU2GzMyu8wiEkO/w4kERr36MN//GSbIHTSxoKKq66e6KMs608f1vb219Y3Nru7BT3N3bPzgsHR03dWoVoQ2S8lS1I6wpZ5I2DDOctjNFsYg4bUXDu5nfGlGlWSofzTijocB9yRJGsHFSeIUuUUZlbLkVulcq+xV/DrRKgpyUIUe9V/rqximxgkpDONa6E/iZCSdYGUY4nRa7VtMMkyHu046jEguqw8n86Ck6d0qMklS5kgbN1d8TEyy0HovIdQpsBnrZm4n/eR1rkptwwmRmDZVksSixHJkUzRJAMVOUGD52BBPF3K2IDLDCxLicii6EYPnlVdKsVgK/EjxUy7XbPI4CnMIZXEAA11CDe6hDAwg8wTO8wps38l68d+9j0brm5TMn8Afe5w/OuZF3</latexit><latexit sha1_base64="qQaXtA7Y9pkD+X6lu6/OQ0rjyxg=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHbjQY9BLx4jmAckS5idnU2GzMyu8wiEkO/w4kERr36MN//GSbIHTSxoKKq66e6KMs608f1vb219Y3Nru7BT3N3bPzgsHR03dWoVoQ2S8lS1I6wpZ5I2DDOctjNFsYg4bUXDu5nfGlGlWSofzTijocB9yRJGsHFSeIUuUUZlbLkVulcq+xV/DrRKgpyUIUe9V/rqximxgkpDONa6E/iZCSdYGUY4nRa7VtMMkyHu046jEguqw8n86Ck6d0qMklS5kgbN1d8TEyy0HovIdQpsBnrZm4n/eR1rkptwwmRmDZVksSixHJkUzRJAMVOUGD52BBPF3K2IDLDCxLicii6EYPnlVdKsVgK/EjxUy7XbPI4CnMIZXEAA11CDe6hDAwg8wTO8wps38l68d+9j0brm5TMn8Afe5w/OuZF3</latexit><latexit sha1_base64="qQaXtA7Y9pkD+X6lu6/OQ0rjyxg=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHbjQY9BLx4jmAckS5idnU2GzMyu8wiEkO/w4kERr36MN//GSbIHTSxoKKq66e6KMs608f1vb219Y3Nru7BT3N3bPzgsHR03dWoVoQ2S8lS1I6wpZ5I2DDOctjNFsYg4bUXDu5nfGlGlWSofzTijocB9yRJGsHFSeIUuUUZlbLkVulcq+xV/DrRKgpyUIUe9V/rqximxgkpDONa6E/iZCSdYGUY4nRa7VtMMkyHu046jEguqw8n86Ck6d0qMklS5kgbN1d8TEyy0HovIdQpsBnrZm4n/eR1rkptwwmRmDZVksSixHJkUzRJAMVOUGD52BBPF3K2IDLDCxLicii6EYPnlVdKsVgK/EjxUy7XbPI4CnMIZXEAA11CDe6hDAwg8wTO8wps38l68d+9j0brm5TMn8Afe5w/OuZF3</latexit><latexit sha1_base64="qQaXtA7Y9pkD+X6lu6/OQ0rjyxg=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHbjQY9BLx4jmAckS5idnU2GzMyu8wiEkO/w4kERr36MN//GSbIHTSxoKKq66e6KMs608f1vb219Y3Nru7BT3N3bPzgsHR03dWoVoQ2S8lS1I6wpZ5I2DDOctjNFsYg4bUXDu5nfGlGlWSofzTijocB9yRJGsHFSeIUuUUZlbLkVulcq+xV/DrRKgpyUIUe9V/rqximxgkpDONa6E/iZCSdYGUY4nRa7VtMMkyHu046jEguqw8n86Ck6d0qMklS5kgbN1d8TEyy0HovIdQpsBnrZm4n/eR1rkptwwmRmDZVksSixHJkUzRJAMVOUGD52BBPF3K2IDLDCxLicii6EYPnlVdKsVgK/EjxUy7XbPI4CnMIZXEAA11CDe6hDAwg8wTO8wps38l68d+9j0brm5TMn8Afe5w/OuZF3</latexit>

5 - pendulums
<latexit sha1_base64="ZHm0vHKwaOc04+3CCfl2p2LV3NU=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHYDosegF48RzAOSJczOziZDZmbXeQRCyHd48aCIVz/Gm3/jJNmDJhY0FFXddHdFGWfa+P63t7a+sbm1Xdgp7u7tHxyWjo6bOrWK0AZJearaEdaUM0kbhhlO25miWESctqLh3cxvjajSLJWPZpzRUOC+ZAkj2DgpvEKXKKMyttwK3SuV/Yo/B1olQU7KkKPeK31145RYQaUhHGvdCfzMhBOsDCOcTotdq2mGyRD3acdRiQXV4WR+9BSdOyVGSapcSYPm6u+JCRZaj0XkOgU2A73szcT/vI41yU04YTKzhkqyWJRYjkyKZgmgmClKDB87goli7lZEBlhhYlxORRdCsPzyKmlWK4FfCR6q5dptHkcBTuEMLiCAa6jBPdShAQSe4Ble4c0beS/eu/exaF3z8pkT+APv8wfR2ZF5</latexit><latexit sha1_base64="ZHm0vHKwaOc04+3CCfl2p2LV3NU=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHYDosegF48RzAOSJczOziZDZmbXeQRCyHd48aCIVz/Gm3/jJNmDJhY0FFXddHdFGWfa+P63t7a+sbm1Xdgp7u7tHxyWjo6bOrWK0AZJearaEdaUM0kbhhlO25miWESctqLh3cxvjajSLJWPZpzRUOC+ZAkj2DgpvEKXKKMyttwK3SuV/Yo/B1olQU7KkKPeK31145RYQaUhHGvdCfzMhBOsDCOcTotdq2mGyRD3acdRiQXV4WR+9BSdOyVGSapcSYPm6u+JCRZaj0XkOgU2A73szcT/vI41yU04YTKzhkqyWJRYjkyKZgmgmClKDB87goli7lZEBlhhYlxORRdCsPzyKmlWK4FfCR6q5dptHkcBTuEMLiCAa6jBPdShAQSe4Ble4c0beS/eu/exaF3z8pkT+APv8wfR2ZF5</latexit><latexit sha1_base64="ZHm0vHKwaOc04+3CCfl2p2LV3NU=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHYDosegF48RzAOSJczOziZDZmbXeQRCyHd48aCIVz/Gm3/jJNmDJhY0FFXddHdFGWfa+P63t7a+sbm1Xdgp7u7tHxyWjo6bOrWK0AZJearaEdaUM0kbhhlO25miWESctqLh3cxvjajSLJWPZpzRUOC+ZAkj2DgpvEKXKKMyttwK3SuV/Yo/B1olQU7KkKPeK31145RYQaUhHGvdCfzMhBOsDCOcTotdq2mGyRD3acdRiQXV4WR+9BSdOyVGSapcSYPm6u+JCRZaj0XkOgU2A73szcT/vI41yU04YTKzhkqyWJRYjkyKZgmgmClKDB87goli7lZEBlhhYlxORRdCsPzyKmlWK4FfCR6q5dptHkcBTuEMLiCAa6jBPdShAQSe4Ble4c0beS/eu/exaF3z8pkT+APv8wfR2ZF5</latexit><latexit sha1_base64="ZHm0vHKwaOc04+3CCfl2p2LV3NU=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHYDosegF48RzAOSJczOziZDZmbXeQRCyHd48aCIVz/Gm3/jJNmDJhY0FFXddHdFGWfa+P63t7a+sbm1Xdgp7u7tHxyWjo6bOrWK0AZJearaEdaUM0kbhhlO25miWESctqLh3cxvjajSLJWPZpzRUOC+ZAkj2DgpvEKXKKMyttwK3SuV/Yo/B1olQU7KkKPeK31145RYQaUhHGvdCfzMhBOsDCOcTotdq2mGyRD3acdRiQXV4WR+9BSdOyVGSapcSYPm6u+JCRZaj0XkOgU2A73szcT/vI41yU04YTKzhkqyWJRYjkyKZgmgmClKDB87goli7lZEBlhhYlxORRdCsPzyKmlWK4FfCR6q5dptHkcBTuEMLiCAa6jBPdShAQSe4Ble4c0beS/eu/exaF3z8pkT+APv8wfR2ZF5</latexit>

7 - pendulums
<latexit sha1_base64="KM3iZPna5563I5vlj7QU5HYKEGU=">AAAB9HicbVDLSgNBEJz1GeMr6tHLYBC8GHZzicegF48RzAOSJczOdpIhM7PrPAJhyXd48aCIVz/Gm3/jJNmDJhY0FFXddHdFKWfa+P63t7G5tb2zW9gr7h8cHh2XTk5bOrGKQpMmPFGdiGjgTELTMMOhkyogIuLQjsZ3c789AaVZIh/NNIVQkKFkA0aJcVJYw9c4BRlbboXul8p+xV8Ar5MgJ2WUo9EvffXihFoB0lBOtO4GfmrCjCjDKIdZsWc1pISOyRC6jkoiQIfZ4ugZvnRKjAeJciUNXqi/JzIitJ6KyHUKYkZ61ZuL/3ldawY3YcZkag1Iulw0sBybBM8TwDFTQA2fOkKoYu5WTEdEEWpcTkUXQrD68jppVSuBXwkequX6bR5HAZ2jC3SFAlRDdXSPGqiJKHpCz+gVvXkT78V79z6WrRtePnOG/sD7/AHU+ZF7</latexit><latexit sha1_base64="KM3iZPna5563I5vlj7QU5HYKEGU=">AAAB9HicbVDLSgNBEJz1GeMr6tHLYBC8GHZzicegF48RzAOSJczOdpIhM7PrPAJhyXd48aCIVz/Gm3/jJNmDJhY0FFXddHdFKWfa+P63t7G5tb2zW9gr7h8cHh2XTk5bOrGKQpMmPFGdiGjgTELTMMOhkyogIuLQjsZ3c789AaVZIh/NNIVQkKFkA0aJcVJYw9c4BRlbboXul8p+xV8Ar5MgJ2WUo9EvffXihFoB0lBOtO4GfmrCjCjDKIdZsWc1pISOyRC6jkoiQIfZ4ugZvnRKjAeJciUNXqi/JzIitJ6KyHUKYkZ61ZuL/3ldawY3YcZkag1Iulw0sBybBM8TwDFTQA2fOkKoYu5WTEdEEWpcTkUXQrD68jppVSuBXwkequX6bR5HAZ2jC3SFAlRDdXSPGqiJKHpCz+gVvXkT78V79z6WrRtePnOG/sD7/AHU+ZF7</latexit><latexit sha1_base64="KM3iZPna5563I5vlj7QU5HYKEGU=">AAAB9HicbVDLSgNBEJz1GeMr6tHLYBC8GHZzicegF48RzAOSJczOdpIhM7PrPAJhyXd48aCIVz/Gm3/jJNmDJhY0FFXddHdFKWfa+P63t7G5tb2zW9gr7h8cHh2XTk5bOrGKQpMmPFGdiGjgTELTMMOhkyogIuLQjsZ3c789AaVZIh/NNIVQkKFkA0aJcVJYw9c4BRlbboXul8p+xV8Ar5MgJ2WUo9EvffXihFoB0lBOtO4GfmrCjCjDKIdZsWc1pISOyRC6jkoiQIfZ4ugZvnRKjAeJciUNXqi/JzIitJ6KyHUKYkZ61ZuL/3ldawY3YcZkag1Iulw0sBybBM8TwDFTQA2fOkKoYu5WTEdEEWpcTkUXQrD68jppVSuBXwkequX6bR5HAZ2jC3SFAlRDdXSPGqiJKHpCz+gVvXkT78V79z6WrRtePnOG/sD7/AHU+ZF7</latexit><latexit sha1_base64="KM3iZPna5563I5vlj7QU5HYKEGU=">AAAB9HicbVDLSgNBEJz1GeMr6tHLYBC8GHZzicegF48RzAOSJczOdpIhM7PrPAJhyXd48aCIVz/Gm3/jJNmDJhY0FFXddHdFKWfa+P63t7G5tb2zW9gr7h8cHh2XTk5bOrGKQpMmPFGdiGjgTELTMMOhkyogIuLQjsZ3c789AaVZIh/NNIVQkKFkA0aJcVJYw9c4BRlbboXul8p+xV8Ar5MgJ2WUo9EvffXihFoB0lBOtO4GfmrCjCjDKIdZsWc1pISOyRC6jkoiQIfZ4ugZvnRKjAeJciUNXqi/JzIitJ6KyHUKYkZ61ZuL/3ldawY3YcZkag1Iulw0sBybBM8TwDFTQA2fOkKoYu5WTEdEEWpcTkUXQrD68jppVSuBXwkequX6bR5HAZ2jC3SFAlRDdXSPGqiJKHpCz+gVvXkT78V79z6WrRtePnOG/sD7/AHU+ZF7</latexit>

9 - pendulums
<latexit sha1_base64="xm9G5Jth0zeFR0GqqussVzrDwMo=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHZzUW9BLx4jmAckS5idnU2GzMyu8wiEkO/w4kERr36MN//GSbIHTSxoKKq66e6KMs608f1vb219Y3Nru7BT3N3bPzgsHR03dWoVoQ2S8lS1I6wpZ5I2DDOctjNFsYg4bUXDu5nfGlGlWSofzTijocB9yRJGsHFSeIMuUUZlbLkVulcq+xV/DrRKgpyUIUe9V/rqximxgkpDONa6E/iZCSdYGUY4nRa7VtMMkyHu046jEguqw8n86Ck6d0qMklS5kgbN1d8TEyy0HovIdQpsBnrZm4n/eR1rkutwwmRmDZVksSixHJkUzRJAMVOUGD52BBPF3K2IDLDCxLicii6EYPnlVdKsVgK/EjxUy7XbPI4CnMIZXEAAV1CDe6hDAwg8wTO8wps38l68d+9j0brm5TMn8Afe5w/YGZF9</latexit><latexit sha1_base64="xm9G5Jth0zeFR0GqqussVzrDwMo=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHZzUW9BLx4jmAckS5idnU2GzMyu8wiEkO/w4kERr36MN//GSbIHTSxoKKq66e6KMs608f1vb219Y3Nru7BT3N3bPzgsHR03dWoVoQ2S8lS1I6wpZ5I2DDOctjNFsYg4bUXDu5nfGlGlWSofzTijocB9yRJGsHFSeIMuUUZlbLkVulcq+xV/DrRKgpyUIUe9V/rqximxgkpDONa6E/iZCSdYGUY4nRa7VtMMkyHu046jEguqw8n86Ck6d0qMklS5kgbN1d8TEyy0HovIdQpsBnrZm4n/eR1rkutwwmRmDZVksSixHJkUzRJAMVOUGD52BBPF3K2IDLDCxLicii6EYPnlVdKsVgK/EjxUy7XbPI4CnMIZXEAAV1CDe6hDAwg8wTO8wps38l68d+9j0brm5TMn8Afe5w/YGZF9</latexit><latexit sha1_base64="xm9G5Jth0zeFR0GqqussVzrDwMo=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHZzUW9BLx4jmAckS5idnU2GzMyu8wiEkO/w4kERr36MN//GSbIHTSxoKKq66e6KMs608f1vb219Y3Nru7BT3N3bPzgsHR03dWoVoQ2S8lS1I6wpZ5I2DDOctjNFsYg4bUXDu5nfGlGlWSofzTijocB9yRJGsHFSeIMuUUZlbLkVulcq+xV/DrRKgpyUIUe9V/rqximxgkpDONa6E/iZCSdYGUY4nRa7VtMMkyHu046jEguqw8n86Ck6d0qMklS5kgbN1d8TEyy0HovIdQpsBnrZm4n/eR1rkutwwmRmDZVksSixHJkUzRJAMVOUGD52BBPF3K2IDLDCxLicii6EYPnlVdKsVgK/EjxUy7XbPI4CnMIZXEAAV1CDe6hDAwg8wTO8wps38l68d+9j0brm5TMn8Afe5w/YGZF9</latexit><latexit sha1_base64="xm9G5Jth0zeFR0GqqussVzrDwMo=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHZzUW9BLx4jmAckS5idnU2GzMyu8wiEkO/w4kERr36MN//GSbIHTSxoKKq66e6KMs608f1vb219Y3Nru7BT3N3bPzgsHR03dWoVoQ2S8lS1I6wpZ5I2DDOctjNFsYg4bUXDu5nfGlGlWSofzTijocB9yRJGsHFSeIMuUUZlbLkVulcq+xV/DrRKgpyUIUe9V/rqximxgkpDONa6E/iZCSdYGUY4nRa7VtMMkyHu046jEguqw8n86Ck6d0qMklS5kgbN1d8TEyy0HovIdQpsBnrZm4n/eR1rkutwwmRmDZVksSixHJkUzRJAMVOUGD52BBPF3K2IDLDCxLicii6EYPnlVdKsVgK/EjxUy7XbPI4CnMIZXEAAV1CDe6hDAwg8wTO8wps38l68d+9j0brm5TMn8Afe5w/YGZF9</latexit>

(q) Convolution Method (r) 2nd order PME (s) 3r d order PME (t) 4th order PME

Fig. 4 Comparison of Various Approaches in Approximating Reachability Set of N-Pendulums

B. 2D Airplane Problem
In this section, the reachability set of an airplane flying in two dimensions is calculated based on Ref. [46]. In this

example, the external disturbances are also accounted. These disturbances can arise due to the wind gusts alongside the
noise in the control inputs. The full non-linear dynamics of the system are given by:

Ûx = −v cosψ + ω
Ûy = v sinψ

(34)

where x and y represents the position of vehicle in x and y direction respectively and ψ is the yaw angle. The control
input v represents the forward speed of the plane, and w represents the cross-wind. Note that this is also a type of
Dubin’s model, which is considered in the next section.

This continuous-time Airplane model can be discretized by approximating time derivatives with a finite difference
as,

xk+1 = xk + (−v cosψ(t) + w(t))∆t
yk+1 = yk + v sinψ(t)∆t

(35)

By choosing an appropriate time step ∆t , the reachability set can be computed at any time instance. For calculating
the numerical results, the zero initial conditions, i.e., x0 = 0 and y0 = 0 are assumed. The speed of the airplane,
cross-wind, and the yaw angle is varied between the following bounds for computing the reachability set:

9.5m/s ≤ v ≤ 10.5m/s

−0.3m/s ≤ w ≤ 0.3m/s
−10deg ≤ ψ ≤ 10deg

(36)

The reachability set of the airplane is computed with the aforementioned approaches by using the discrete-time
model given in Eq. (35) and by applying the bounds as given in Eq. (36). The ground truth is generated by taking
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100, 000 MC samples at each time step, and ∆t is chosen to be 0.5s. This heuristic approach will serve as the ground
truth for the comparison with the proposed approaches. Next, the reachability set is calculated using the convolution
method by taking 100, 000 MC points. These results are shown in the first column of Fig. 5 with time-varying from
t1 = 1s to t7 = 7s. In Fig. 5 the convolution contours are superimposed with the MC scatter points (shown in cyan
colour). It can be observed that the convolution contours are able to capture the shape of the reachability set in a precise
manner, by looking carefully at the figures. Further, the PME approach is employed using 10, 000 MC points with the
2nd, 3rd and 4th order moment constraints. The variation of 3rd and 4th order constraints can be seen in the second
and third column of Fig. 5 from time t1 = 1s to t7 = 7s. The 2nd order approximation gives the ellipsoidal contours
as shown in the first column of Fig. 6. Notice here that the contour levels are plotted at a similar level for all the
three-moment constraint orders. It can be observed that with the inclusion of 3rd and 4th order in the approximation, the
contours started to take the shape of the heuristic reachability set. Finally, the CUT method is utilized for computing the
reachability set at these time instances. Notably, this method only used 21 CUT points for both 2D state and 2D control
input. Since second-order moment constraint is only accounted, the 1 − σ, 2 − σ, 3 − σ, 4 − σ and 5 − σ bounds come
out to be of ellipsoidal shape and can be seen in the 2nd column of Fig. 6.

C. Dubin’s Model
In this section, the above mentioned numerical techniques are applied to a Dubin’s car model [45], which is a simple

non-holonomic model for ground vehicle motion planning. Mathematically Dubin’s model is:

Ûx = v cos θ
Ûy = v sin θ
Ûθ = ω

(37)

where x and y represent the position of the vehicle and θ is the heading angle. v is the forward velocity and ω is the
angular velocity. The continuous time Dubin’s model of Eq. (37) can be discretized by approximating time derivatives
with a finite difference, as shown by Eq. (38).

xk+1 = xk + v cos θk∆t

yk+1 = yk + v sin θk∆t

θk+1 = θk + ω∆t
(38)

where ∆t is the time step size between the two consecutive states. For calculating the reachability set, the control inputs
v and ω are assumed to be uniformly distributed random variables within prescribed bounds given in Eq. (39).

10m/s ≤ v ≤ 20m/s, −1deg/s ≤ ω ≤ 1deg/s (39)

To generate the ground truth, the reachability set is first computed through the Monte Carlo (brute force) sampling
by taking all possible combinations of xk and uk at each time step. 100, 000 MC samples for both the control input
and initial state are taken with the time step size, ∆t chosen as 0.5s. The evolution of reachability set at time t2 = 1s,
t3 = 1.5s, t4 = 2s and t5 = 2.5s is shown in Fig. 7. Notice that x values are increasing in the positive direction due to
cosθ term, while the values in y are increasing symmetrically in both directions due to sinθ term with an increase in
time.

Furthermore, the reachability sets are generated through the application of PME using 100, 000 MC points as shown
in Fig. 8. The PME approximation of reachability set are superimposed with MC points (shown in cyan colour dots) by
considering second, third, and fourth order statistical moments as constraints in PME formulation of Eq. (11)-Eq. (12).
As expected the second order moment constraints results in an ellipsoidal approximation of the reachability set as can
be seen in Figure 8(a) while the reachability set approximation improves with the inclusion of higher order moment
constraints in PME formulations as illustrated in Figure 8(b) and Figure 8(c).

The comparison of each approach at time instances t3, t4 and t5 is shown in Fig. 9. The reachability sets generated
using the convolution method is shown in Fig. 9(a), Fig. 9(d) and Fig. 9(g). This method utilizes 100, 000 random
samples of uk at each time and then convolved with the histogram of the previous time step to get the histogram at the
current time step. Comparing these results with the MC plots, it can be seen that the convolution pretty accurately
captures the whole region of the reachability set. For instance, at time t3 shown in Fig. 9(a), the shape of the contours
generated through the convolution is able to capture the shape of the whole domain of the MC points shown in cyan
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Convolution approximation 3rd order PME approximation 4th order PME approximation

Fig. 5 Reachability Set of an Airplane computed using Convolution and PME
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2nd order PME approximation 2nd order CUT approximation

Fig. 6 Reachability Set an Airplane computed through 2nd order PME and CUT method
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Fig. 7 Evolution of Reachability Set for Dubin’s Model through MC

colour dots. For comparison, the 4th order PME reachability set is shown in Fig. 9(b), Fig. 9(e) and Fig. 9(h), which
again captures the reachability in perfect, well shape and an accurate manner. Finally, the reachability envelope using
the statistical moments is shown in Fig. 9(c), Fig. 9(f) and Fig. 9(i) where the uniform CUT8 samples for control and
gaussian CUT8 samples for state are used (which results in only 21 points in 2D and 59 points in 3D). The 1 − σ, 2 − σ,
3 − σ, 4 − σ and 5 − σ bounds can be seen in different colour shades along with MC samples, which are represented by
black dots. This time, even though MC samples lie inside the 5-sigma bounds, the ellipsoidal contours do not match the
shape of the MC envelope. This is due to the fact that the nature of the probability density function for the state at each
time step is approximated to be Gaussian. In this case, only the first two statistical moments are used (the mean and
covariance) to reconstruct the density function, hence the ellipsoidal shape.
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(a) Moment up to 2nd order

(b) Moment up to 3r d order

(c) Moment up to 4th order

Fig. 8 Reachability of Dubin’s Model at t3 computed through the application of PME
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(a) Convolution product at t3 (b) 4th order PME at t3 (c) Statistical moment at t3

(d) Convolution product at t4 (e) 4th order PME at t4 (f) Statistical moment at t4

(g) Convolution product at t5 (h) 4th order PME at t5 (i) Statistical moment at t5

Fig. 9 Comparison of Different Approaches in Approximating Reachability Set for Dubin’s Model

V. Conclusion
Computationally attractive approaches for evaluating the reachability of a nonlinear system are developed. The

probabilistic approach presented in the paper provides a means of representing the reachability level sets as the state
probability density function maps obtained by modeling the inputs as random vectors. By convolving the histograms of
state and control at a previous time step, the convolution method computes the information of state at the current time
step. By exploiting the intricate relationships of the moment generating functions of multivariate random variables to
the probability density function, and building upon the principle of maximum entropy, the method demonstrates that the
reachability set computation becomes tremendously simplified. Further, Conjugate Unscented Transformation (CUT) is
used to compute multi-dimensional expectation integrals required to calculate desired order moments associated with
state density function at each time. This approach exploits the independence of state variable and control input variable
to curtail the conventional combinatorial growth of samples associated with the computation of reachability sets. Using
the representative examples show the utility of the proposed approach in efficient realization of manifolds for constrained
mechanical systems. The future work will focus on the incorporation of higher order moments through the CUT method.
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